Skip to main content

How to Measure Resistance with a Digital Multimeter

By December 2, 2023February 21st, 2024Insights

This article was originally published on www.fluke.com.

Digital multimeters, Fundamentals

Why measure resistance? To determine the condition of a circuit or component. The higher the resistance, the lower the current flow, and vice versa.

In general, the resistance of components used to control circuits (such as switches and relay contacts) starts out very low and increases over time due to factors such as wear and dirt. Loads such as motors and solenoids decrease in resistance over time due to insulation breakdown and moisture.

To measure resistance:
1. Turn the power to the circuit OFF.

  • If a circuit includes a capacitor, discharge the capacitor before taking any resistance reading.

2. Turn digital multimeter dial to resistance, or ohms, which often shares a spot on the dial with one or more other test/measurement modes (continuity, capacitance or diode; see illustration below).

  • The display should show OLΩ because, in Resistance mode, even before test leads are connected to a component, a digital multimeter automatically begins taking a resistance measurement.
  • The MΩ symbol may appear in the display because the resistance of open (unattached) test leads is very high.
  • When the leads are connected to a component, a digital multimeter automatically uses the Autorange mode to adjust to the best range.
  • Pressing the Range button allows a technician to manually set the range.
  • The best results will be achieved if the component to be tested is removed from the circuit. If the component is left in the circuit, the readings could be affected by other components in parallel with the component to be tested.

3. First insert the black test lead into the COM jack.
4. Then insert the red lead into the VΩ jack.

  • When finished, remove the leads in reverse order: red first, then black.

5. Connect test leads across the component being tested.

  • Make sure that contact between the test leads and the circuit is good.

Tip: For very low-resistance measurements, use the relative mode (REL; see point 11). It may also be referred to as zero or Delta (Δ) mode. It automatically subtracts test lead resistance—typically 0.2 Ω to 0.5 Ω. Ideally, if test leads touch (are shorted together), the display should show 0 Ω.

Other factors that can affect resistance readings: Foreign substances (dirt, solder flux, oil), body contact with the metal ends of the test leads, or parallel circuit paths. The human body becomes a parallel resistance path, lowering total circuit resistance. Thus, avoiding touching metal parts of the test leads to avoiding errors.
6. Read the measurement on the display.
7. When finished, turn the multimeter OFF to prevent battery drain.

Advanced digital multimeter options

8. Press the RANGE button to select a specific fixed measurement range.

  • Be sure to note the annunciator (such as K or M) after the measurement in the display.

9. Press the HOLD button to capture a stable measurement—it can be viewed later.
10. Press the MIN/MAX button to capture the lowest and highest measurements.

  • The multimeter beeps each time a new reading is recorded.

11. Press the relative (REL) button to set the multimeter to a specific reference value.

  • Measurements above and below the reference value are displayed.

Resistance Measurement Analysis

The significance of a resistance reading depends on the component being tested. In general, the resistance of any one component varies over time and from component to component. Slight resistance changes are usually not critical but may indicate a pattern that should be noted. For example, as the resistance of a heating element rises, the current passing through the element decreases, and vice versa. See diagram below.

When working on a circuit board, it may be necessary to lift one of the leads of the resistor from the board to measure the correct resistance of the resistor. The resistance measurement displayed by a digital multimeter is the total resistance through all possible paths between the test lead probes. Caution is required when measuring resistance across a component that is part of a circuit.

The resistance of all components connected in parallel with a component being tested affects the resistance reading, usually lowering it. Always check the circuit schematic for parallel paths.

Reference: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

How to measure insulation resistance